Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Building on recent developments in the literature, this article addresses a prominent research question in the study of civil conflict: what explains violence against civilians? We use a novel computational model to investigate the strategic incentives for victimization in a network setting; one that incorporates civilians’ strategic behavior. We argue that conflicts with high network competition—where conflict between any two actors is more likely—lead to higher rates of civilian victimization, irrespective of the conflict's overall intensity or total number of actors. We test our theory in a cross-national setting using event data to generate measures of both conflict intensity and network density. Empirical analysis supports our model's finding that conflict systems with high levels of network competition are associated with a higher level of violence against the civilian population.more » « less
-
Abstract International relations scholarship concerns dyads, yet standard modeling approaches fail to adequately capture the data generating process behind dyadic events and processes. As a result, they suffer from biased coefficients and poorly calibrated standard errors. We show how a regression-based approach, the Additive and Multiplicative Effects (AME) model, can be used to account for the inherent dependencies in dyadic data and glean substantive insights in the interrelations between actors. First, we conduct a simulation to highlight how the model captures dependencies and show that accounting for these processes improves our ability to conduct inference on dyadic data. Second, we compare the AME model to approaches used in three prominent studies from recent international relations scholarship. For each study, we find that compared to AME, the modeling approach used performs notably worse at capturing the data generating process. Further, conventional methods misstate the effect of key variables and the uncertainty in these effects. Finally, AME outperforms standard approaches in terms of out-of-sample fit. In sum, our work shows the consequences of failing to take the dependencies inherent to dyadic data seriously. Most importantly, by better modeling the data generating process underlying political phenomena, the AME framework improves scholars’ ability to conduct inferential analyses on dyadic data.more » « less
-
Abstract Spatial interdependencies commonly drive the spread of violence in civil conflict. To address such interdependence, scholars often use spatial lags to model the diffusion of violence, but this requires an explicit operationalization of the connectivity matrices that represent the spread of conflict. Unfortunately, in many cases, there are multiple competing processes that facilitate the spread of violence making it difficult to identify the true data-generating process. We show how a network-driven methodology can allow us to account for the spread of violence, even in the cases where we cannot directly measure the factors that drive diffusion. To do so, we estimate a latent connectivity matrix that captures a variety of possible diffusion patterns. We use this procedure to study intrastate conflict in eight conflict-prone countries and show how our framework enables substantially better predictive performance than canonical spatial-lag measures. We also investigate the circumstances under which canonical spatial lags suffice and those under which a latent network approach is beneficial.more » « less
An official website of the United States government

Full Text Available